Inspired by the phenomenon of water droplets hanging over rose petals, we propose a green interfacial self-assembly strategy to construct amphiphilic particles with controllable compartments for dual-drug encapsulation and controlled release. The method involves fabrication of “sticky” superhydrophobic materials, assembling superhydrophilic hydrogel beads with “sticky” superhydrophobic material into an amphiphilic particle, and amphiphilicity induced self-organization of several small amphiphilic particles into a large-sized amphiphilic multicompartmental particle. With the employment of this approach, amphiphilic particles with tailored sizes, controllable morphology, and tunable numbers of compartments are successfully constructed. The formation process and the underlying principle are further clarified. We finally investigate the potential application of the amphiphilic multicompartmental particles to load both hydrophilic and hydrophobic species in separated domains and release them in a controllable manner without interference. This novel approach may offer a new route to generate amphiphilic materials for the purpose of multidrug combination therapy, multiple-cell encapsulation, and so on.

Learn more (opens external site)

 

Comments are closed.

Submit a Team Connection

Click here to submit a new Bioinspired Design Connection (you must be logged in first).

Browse Team Connections

Choose by category, team or week:

BioDesign Connections by Category (2020 – 2022)

by Team (2022 only)

by Week (2022 only)

Most Recent Connections

Connection Interactions

Recent Comments

  1. to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…

Top Voted Connections