Paper, A Bio-Inspired Robot With Undulatory Fins and Its Control Methods
This paper proposes a bio-inspired robot with undulatory fins and summarizes its control methods. First, three basic motions, forward/backward swimming, diving/rising motion, and turning, are implemented and evaluated by experiments. Next, a hybrid control that combines active disturbance rejection control with a fuzzy strategy is presented to achieve closed-loop depth and course control according to the evaluation of the three basic motions. Finally, waypoint tracking with a line-of-sight guidance system based on a finite-state machine for this bio-inspired robot is presented. The results of swimming experiments are provided to illustrate the validity of the proposed methods.
Learn about our two Decals!
Click here to find out more about our Fall Bioinspired Design Decal and our Spring Bioinspired Design in Action Decal – ALL MAJORS are welcome.
Berkeley BioDesign Community
Click here to learn about the BioD: Bio-Inspired Design @ Berkeley student organization or here to signup for more info.
Search
Student Login
I imagine that the neurological circuits underlying these processes are governed by both 2d spacing maps with their brains as…
to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…
you see this type of head-bobbing stability in many avian creatures related to pigeons like chickens. the head ability to…
not like they taught horses how to run! this is an example of convergent evolution where both sea creatures and…
The brain functions in a similar way with neuronal connections. our brains are able to utilize the multiplicity of connections…