Paper, Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations
Robotic vehicles capable of transition from aquatic to terrestrial locomotion face considerable challenges associated with propulsive efficiency and performance in each environment. Here we present a morphing amphibious robotic limb that combines the locomotor adaptations of sea turtles for swimming and tortoises for walking. The limb can transform between the streamlined morphology of a sea turtle flipper and the load-bearing geometry of a tortoise leg using a variable stiffness material coupled to a pneumatic actuator system. Herein, we describe the fabrication and characterization of the morphing limb and quantitatively show how morphing between hydrodynamic and axial-load bearing states can enhance the locomotive performance of a single design over land and in water.
Learn about our two Decals!
Click here to find out more about our Fall Bioinspired Design Decal and our Spring Bioinspired Design in Action Decal – ALL MAJORS are welcome.
Berkeley BioDesign Community
Click here to learn about the BioD: Bio-Inspired Design @ Berkeley student organization or here to signup for more info.
Search
Student Login
I imagine that the neurological circuits underlying these processes are governed by both 2d spacing maps with their brains as…
to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…
you see this type of head-bobbing stability in many avian creatures related to pigeons like chickens. the head ability to…
not like they taught horses how to run! this is an example of convergent evolution where both sea creatures and…
The brain functions in a similar way with neuronal connections. our brains are able to utilize the multiplicity of connections…