Paper, The development of the electroreceptors of the platypus
A series of developmental stages of the platypus were examined to obtain an anatomical description of the development of the periphery of the electroreceptive system. Putative electroreceptors, composed of modified mucous glands, were observed to appear at 10 days post hatching (p.h.). The typical striped arrangement of peripheral electroreceptors in the platypus was seen at 12 days p.h. The arrangement of the stripes was modified during development with a range of additions and divisions of stripes occurring until the adult pattern is obtained, approximately 6 months p.h. After appearing at 10 days p.h., the number of electroreceptors increases rapidly until sometime between 24 and 28 days p.h. when there is massive death of electroreceptors, the number present at 28 days p.h. being 60% of the number present at 24 days p.h. This massive death of receptors is coincident with the appearance of other sensory structures in the epidermis of the bill skin, the push-rod mechanoreceptors and the sensory serous glands. Histological examination of a range of developmental stages demonstrated poorly differentiated innervation at 28 days p.h., which became differentiated and reached the adult configuration between 11 weeks p.h. and 6 months p.h., the time at which nestling platypuses leave the burrow. Lamination of the cells lining the duct of the electroreceptors showed a similar developmental profile. This study indicates that the electroreceptive system of the developing platypus is not functional, in a similar manner to the adult, until it is time for the platypus to leave the nesting burrow. However, the system may be functional in the developing platypus, and may be used speculatively in the location of the mammary region for suckling.
Learn about our two Decals!
Click here to find out more about our Fall Bioinspired Design Decal and our Spring Bioinspired Design in Action Decal – ALL MAJORS are welcome.
Berkeley BioDesign Community
Click here to learn about the BioD: Bio-Inspired Design @ Berkeley student organization or here to signup for more info.
Search
Student Login
I imagine that the neurological circuits underlying these processes are governed by both 2d spacing maps with their brains as…
to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…
you see this type of head-bobbing stability in many avian creatures related to pigeons like chickens. the head ability to…
not like they taught horses how to run! this is an example of convergent evolution where both sea creatures and…
The brain functions in a similar way with neuronal connections. our brains are able to utilize the multiplicity of connections…