Paper, A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities
Biomimetic skin-like materials, capable of adapting shapes to variable environments and sensing external stimuli, are of great significance in a wide range of applications, including artificial intelligence, soft robotics, and smart wearable devices. However, such highly sophisticated intelligence has been mainly found in natural creatures while rarely realized in artificial materials. Herein, we fabricate a type of biomimetic iontronics to imitate natural skins using supramolecular polyelectrolyte hydrogels. The dynamic viscoelastic networks provide the biomimetic skin with a wide spectrum of mechanical properties, including flexible reconfiguration ability, robust elasticity, extremely large stretchability, autonomous self-healability, and recyclability. Meanwhile, polyelectrolytes’ ionic conductivity allows multiple sensory capabilities toward temperature, strain, and stress. This work provides not only insights into dynamic interactions and sensing mechanism of supramolecular iontronics, but may also promote the development of biomimetic skins with sophisticated intelligence similar to natural skins.
Learn about our two Decals!
Click here to find out more about our Fall Bioinspired Design Decal and our Spring Bioinspired Design in Action Decal – ALL MAJORS are welcome.
Berkeley BioDesign Community
Click here to learn about the BioD: Bio-Inspired Design @ Berkeley student organization or here to signup for more info.
Search
Student Login
I imagine that the neurological circuits underlying these processes are governed by both 2d spacing maps with their brains as…
to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…
you see this type of head-bobbing stability in many avian creatures related to pigeons like chickens. the head ability to…
not like they taught horses how to run! this is an example of convergent evolution where both sea creatures and…
The brain functions in a similar way with neuronal connections. our brains are able to utilize the multiplicity of connections…