Paper, Dynamic crushing responses of bio-inspired re-entrant auxetic honeycombs under in-plane impact loading
In order to improve the impact energy absorption abilities and maintain good crushing load uniformity of auxetic honeycombs, a re-entrant arc-shaped honeycomb (RAH) model is proposed according to the concept of bio-inspired structure design. The in-plane impact resistances and absorbed-energy characteristics of bio-inspired auxetic RAHs subjected to a constant velocity crushing are numerically studied by using ABAQUS/EXPLICIT. It is shown that due to the introduction of re-entrant arc-shaped structures, the dynamic response curves of bio-inspired RAHs have better crushing load uniformity than conventional re-entrant honeycombs. Except for the relative density and impact velocity, the dynamic crushing behaviors of bio-inspired RAHs also depend upon the cell micro-structure parameters (e.g., the curvature). Based on the one-dimensional (1D) shock theory and absorbed-energy efficiency method, an empirical equation is deduced to evaluate the dynamic plateau stress of bio-inspired RAHs. The finite element (FE) results coincide well with those calculated by the empirical formulas. Moreover, the specific energy absorption (SEA) and energy dissipation rules of bio-inspired RAHs are discussed, which are also dependent on the curvature. These researches will provide technical support for the innovative structure design and dynamic optimization design of auxetic cellular structures.
Related posts:
Learn about our two Decals!
Click here to find out more about our Fall Bioinspired Design Decal and our Spring Bioinspired Design in Action Decal – ALL MAJORS are welcome.
Berkeley BioDesign Community
Click here to learn about the BioD: Bio-Inspired Design @ Berkeley student organization or here to signup for more info.
Search
Student Login
I imagine that the neurological circuits underlying these processes are governed by both 2d spacing maps with their brains as…
to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…
you see this type of head-bobbing stability in many avian creatures related to pigeons like chickens. the head ability to…
not like they taught horses how to run! this is an example of convergent evolution where both sea creatures and…
The brain functions in a similar way with neuronal connections. our brains are able to utilize the multiplicity of connections…