Robotic vehicles capable of transition from aquatic to terrestrial locomotion face considerable challenges associated with propulsive efficiency and performance in each environment. Here we present a morphing amphibious robotic limb that combines the locomotor adaptations of sea turtles for swimming and tortoises for walking. The limb can transform between the streamlined morphology of a sea turtle flipper and the load-bearing geometry of a tortoise leg using a variable stiffness material coupled to a pneumatic actuator system. Herein, we describe the fabrication and characterization of the morphing limb and quantitatively show how morphing between hydrodynamic and axial-load bearing states can enhance the locomotive performance of a single design over land and in water.

Learn more (opens external site)

 

Comments are closed.

Submit a Team Connection

Click here to submit a new Bioinspired Design Connection (you must be logged in first).

Browse Team Connections

Choose by category, team or week:

BioDesign Connections by Category (2020 – 2022)

by Team (2022 only)

by Week (2022 only)

Most Recent Connections

Connection Interactions

Recent Comments

  1. to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…

Top Voted Connections