Simultaneous localization and mapping (SLAM) is a quintessential problem in autonomous navigation, augmented reality, and virtual reality. In particular, low-power SLAM has gained increasing importance for its applications in power-limited edge devices such as unmanned aerial vehicles (UAVs) and small-sized cars that constitute devices with edge intelligence. This article presents a 7.25-to-8.79-TOPS/W mixed-signal oscillator-based SLAM accelerator for applications in edge robotics. This study proposes a neuromorphic SLAM IC, called NeuroSLAM, employing oscillator-based pose-cells and a digital head direction cell to mimic place cells and head direction cells that have been discovered in a rodent brain. The oscillatory network emulates a spiking neural network and its continuous attractor property achieves spatial cognition with a sparse energy distribution, similar to the brains of rodents. Furthermore, a lightweight vision system with a max-pooling is implemented to support low-power visual odometry and re-localization. The test chip fabricated in a 65-nm CMOS exhibits a peak energy efficiency of 8.79 TOPS/W with a power consumption of 23.82 mW.

Learn more (opens external site)

 

Comments are closed.

Submit a Team Connection

Click here to submit a new Bioinspired Design Connection (you must be logged in first).

Browse Team Connections

Choose by category, team or week:

BioDesign Connections by Category (2020 – 2022)

by Team (2022 only)

by Week (2022 only)

Most Recent Connections

Connection Interactions

Recent Comments

  1. to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…

Top Voted Connections