Bioinspired robotic exoskeleton for endotracheal intubation
Airway management is a priority to any caregiver in a trauma scenario. The current clinical gold standard for airway securement is endotracheal intubation (ETI), which involves placement of an endotracheal tube into patient tracheas and pneumatically expanding a cuff for securement. Incorrect performance of this delicate and complex procedure poses significant risks to patients, as excessive force and leverage during insertion can damage sensitive airway tissues, especially when performed by less-skilled providers or executed in difficult airway situations. The present study investigated the development of a bioinspired mechanical platform termed the Digital Extenders, which is capable of augmenting a provider’s reach for ETI. A prototype that could apply an output force of at least 20 N was designed for comparative analysis versus current clinical approaches. Performance analysis studies utilized an innovative instrumented mannequin model to compare force employed during intubation with the Digital Extenders versus direct laryngoscopy and digital intubation. Resulting data showed that there is an important reduction in applied force at the base of the tongue using the novel Digital Extenders platform; such a reduction of applied force is important in enabling the provider to secure the airway, causing less trauma to the patient. In addition, the use of the Digital Extender protects the provider’s digits from patient bite reactions typical from intubation when the patient is not sufficiently sedated. These study results motivate continued development of the Digital Extenders as a less traumatic approach to ETI. Future consideration may investigate challenges in mannequins’ biomimicry of physiological properties.
Learn about our two Decals!
Click here to find out more about our Fall Bioinspired Design Decal and our Spring Bioinspired Design in Action Decal – ALL MAJORS are welcome.
Berkeley BioDesign Community
Click here to learn about the BioD: Bio-Inspired Design @ Berkeley student organization or here to signup for more info.
Search
Student Login
I imagine that the neurological circuits underlying these processes are governed by both 2d spacing maps with their brains as…
to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…
you see this type of head-bobbing stability in many avian creatures related to pigeons like chickens. the head ability to…
not like they taught horses how to run! this is an example of convergent evolution where both sea creatures and…
The brain functions in a similar way with neuronal connections. our brains are able to utilize the multiplicity of connections…