This paper uses a bio-inspired design strategy based on tree branch joints to improve the damage tolerance of co-cured composite T-joints. The design of tree branch joints at different length scales from the microstructural to the macro-length scale was investigated. X-ray computed tomography of a pine tree revealed three main features of tree branch joints which provide high structural efficiency and damage tolerance: integrated design with the branch embedded into the centre of the trunk; three-dimensional fibril lay-up in the principal stress directions; and variable fibril density to achieve iso-strain conditions through the joint connection. Research presented in this paper adapts the embedded structural feature of tree joints into a carbon/epoxy T-joint. The flange plies were embedded to 25%, 50% and 75% of the depth of the skin of the composite T-joint to mimic the design of tree branch joints. Experimental testing revealed that the bio-inspired T-joint design with integrated adherends had increased normalised inelastic strain energy (defined as ductility), increased normalised absorbed strain energy to failure, and higher load-carrying capacity following damage initiation (damage tolerance) compared to a conventionally bonded T-joint. However, these improvements were achieved at the expense of earlier onset of damage initiation in the T-joints.

Learn more (opens external site)

 

Comments are closed.

Submit a Team Connection

Click here to submit a new Bioinspired Design Connection (you must be logged in first).

Browse Team Connections

Choose by category, team or week:

BioDesign Connections by Category (2020 – 2022)

by Team (2022 only)

by Week (2022 only)

Most Recent Connections

Connection Interactions

Recent Comments

  1. to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…

Top Voted Connections