Dynamic attachment is the key to moving safely and fast in a threedimensional environment. Among lizards, hexapods and arachnids, several lineages have evolved hairy foot pads that can generate strong friction and adhesion on both smooth and rough surfaces. A strongly expressed directionality of attachment structures results in an anisotropy of frictional properties, which might be crucial for attachment control. In a natural situation, more than one leg is usually in contact with the substrate. In order to understand the collective effect of hairy foot pads in the hunting spider Cupiennius salei (Arachnida, Ctenidae), we performed vertical pulling experiments combined with stepwise disabling of the pads. We found the attachment force of the spider to be not simply the sum of single leg forces because with leg pair deactivation a much greater decrease in attachment forces was found than was predicted by just the loss of available adhesive pad area. This indicates that overall adhesion ability of the spider is strongly dependent on the antagonistic work of opposing legs, and the apparent contact area plays only a minor role. It is concluded that the coordinated action of the legs is crucial for adhesion control and for fast and easy detachment. The cumulative effect of anisotropic fibrillar adhesive structures could be potentially interesting for biomimetic applications, such as novel gripping devices.

Learn more (opens external site)

 

Comments are closed.

Submit a Team Connection

Click here to submit a new Bioinspired Design Connection (you must be logged in first).

Browse Team Connections

Choose by category, team or week:

BioDesign Connections by Category (2020 – 2022)

by Team (2022 only)

by Week (2022 only)

Most Recent Connections

Connection Interactions

Recent Comments

  1. to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…

Top Voted Connections