Abstract — We describe the design of an active soft anklefoot orthotic device powered by pneumatic artificial muscles for treating gait pathologies associated with neuromuscular disorders. The design is inspired by the biological musculoskeletal system of a human foot and a lower leg, and mimics the muscle-tendon-ligament structure. A key feature of the device is that it is fabricated with flexible and soft materials that provide assistance without restricting degrees of freedom at the ankle joint. Three pneumatic artificial muscles assist dorsiflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait training and gait pattern analysis. The prototype is capable of 12◦ dorsiflexion from a resting position of an ankle joint and a 20◦ dorsiflexion from plantarflexion. Results of early feedback control experiments show controllability of ankle joint angles. Ultimately, we envision a system that not only can provide physical support to improve mobility but also can increase safety and stability during walking, while enhancing muscle usage and encouraging rehabilitation.

Learn more (opens external site)

 

Comments are closed.

Submit a Team Connection

Click here to submit a new Bioinspired Design Connection (you must be logged in first).

Browse Team Connections

Choose by category, team or week:

BioDesign Connections by Category (2020 – 2022)

by Team (2022 only)

by Week (2022 only)

Most Recent Connections

Connection Interactions

Recent Comments

  1. to reduce the impact of car accidents, it may be possible to study the force diverting physics of cockroaches to…

Top Voted Connections